Advertisements
Advertisements
प्रश्न
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
उत्तर
`a^2 + 1/a^2` = 18`
`( a - 1/a )^2 = a^2 + 1/a^2 - 2`
⇒ `( a - 1/a )^2 = 18 - 2`
⇒ `( a - 1/a)^2 = 16`
⇒ `a - 1/a = +- sqrt16`
⇒ `a - 1/a = +- 4` ...(1)
(ii) `( a - 1/a )^3 = a^3 - 1/a^3 - 3( a - 1/a )`
⇒ `a^3 - 1/a^3 = ( a - 1/a )^3 + 3( a - 1/a )`
⇒ `a^3 - 1/a^3 = (+- 4)^3 + 3(+- 4)` [ From(1) ]
⇒ `a^3 - 1/a^3 = +- 76`
APPEARS IN
संबंधित प्रश्न
Find the cube of : `( 3a - 1/a ) (a ≠ 0 )`
Use property to evaluate : 133 + (-8)3 + (-5)3
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
If X ≠ 0 and X + `1/"X"` = 2 ; then show that :
`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`
If `9"a"^2 + (1)/(9"a"^2) = 23`; find the value of `27"a"^3 + (1)/(27"a"^3)`
If `x^2 + (1)/x^2 = 18`; find : `x^3 - (1)/x^3`
If `"p" + (1)/"p" = 6`; find : `"p"^3 + (1)/"p"^3`
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`
Expand (52)3