Advertisements
Advertisements
प्रश्न
Find the cube of : `( 3a - 1/a ) (a ≠ 0 )`
उत्तर
( a - b )3 = a3 - 3a2b + 3ab2 - b3
`( 3a - 1/a )^3`
= `(3a)^3 - 3 × (3a)^2 × 1/a + 3. 3a (1/a)^2 - (1/a)^3`
= `27a^3 - 3 . 9a^2. 1/a + 9a. 1/a^2 - 1/a^3`
= `27a^3 - 27a + 9/a - 1/a^3`.
APPEARS IN
संबंधित प्रश्न
Two positive numbers x and y are such that x > y. If the difference of these numbers is 5 and their product is 24, find:
(i) Sum of these numbers
(ii) Difference of their cubes
(iii) Sum of their cubes.
Expand : (3x - 5y - 2z) (3x - 5y + 2z)
Find the cube of: 4x + 7y
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If `"p" + (1)/"p" = 6`; find : `"p"^3 + (1)/"p"^3`
If x + 2y = 5, then show that x3 + 8y3 + 30xy = 125.
Expand: `[x + 1/y]^3`
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2
If `"a" + 1/"a"` = 6, then find the value of `"a"^3 + 1/"a"^3`
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`