Advertisements
Advertisements
प्रश्न
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
योग
उत्तर
`5x + (1)/(5x) = 7`
Using `("a" + 1/"a")^3`
= `"a"^3 + (1)/"a"^3 + 3("a" + 1/"a")`, we get :
`(5x + 1/(5"x"))^3`
= `(5x)^3 + (1/(5x))^3 + 3(5x + 1/(5x))`
⇒ 343 = `125x^2 + (1)/(125x^3) + 3(7)`
⇒ `125x^3 + (1)/(125x^3)`
= 343 - 21
= 322.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Expand.
(7x + 8y)3
Expand.
(101)3
Expand.
`(x + 1/x)^3`
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^4 + 1/a^4 )`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
If `("a" + 1/"a")^2 = 3`; then show that `"a"^3 + (1)/"a"^3 = 0`
If x3 + y3 = 9 and x + y = 3, find xy.
If p - q = -1 and pq = -12, find p3 - q3
Expand: `[x + 1/y]^3`