Advertisements
Advertisements
Question
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
Sum
Solution
`5x + (1)/(5x) = 7`
Using `("a" + 1/"a")^3`
= `"a"^3 + (1)/"a"^3 + 3("a" + 1/"a")`, we get :
`(5x + 1/(5"x"))^3`
= `(5x)^3 + (1/(5x))^3 + 3(5x + 1/(5x))`
⇒ 343 = `125x^2 + (1)/(125x^3) + 3(7)`
⇒ `125x^3 + (1)/(125x^3)`
= 343 - 21
= 322.
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Expand.
(k + 4)3
Use property to evaluate : 383 + (-26)3 + (-12)3
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
If X ≠ 0 and X + `1/"X"` = 2 ; then show that :
`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`
Find the cube of: 4x + 7y
Evaluate the following :
(3.29)3 + (6.71)3
Evaluate the following :
(8.12)3 - (3.12)3
Expand: (x + 3)3.
Expand: `((2m)/n + n/(2m))^3`.
If `"a" + 1/"a"` = 6, then find the value of `"a"^3 + 1/"a"^3`