Advertisements
Advertisements
Question
If `3x - (1)/(3x) = 9`; find the value of `27x^3 - (1)/(27x^3)`.
Solution
`3x - (1)/(3x) = 9`
Using `("a" - (1)/"a")^3`
= `"a"^3 - (1)/"a"^3 - 3("a" - 1/"a")`, we get :
`(3x - 1/(3x))^3`
= `(3x)^3 - (1/(3x))^3 -3(3x - 1/(3x))`
⇒ 729 = `27x^3 - (1)/(27x^3) - 3(9)`
⇒ `27x^3 - (1)/(27x^3)`
= 729 + 27
= 756.
APPEARS IN
RELATED QUESTIONS
Expand.
(7 + m)3
If `a + 1/a` = p and a ≠ 0; then show that:
`a^3 + 1/a^3 = p(p^2 - 3)`
If a + 2b = 5; then show that : a3 + 8b3 + 30ab = 125.
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
Find the cube of: `(2"m")/(3"n") + (3"n")/(2"m")`
If `x + (1)/x = 5`, find the value of `x^2 + (1)/x^2, x^3 + (1)/x^3` and `x^4 + (1)/x^4`.
If `("a" + 1/"a")^2 = 3`; then show that `"a"^3 + (1)/"a"^3 = 0`
Simplify:
(a + b)3 + (a - b)3
Expand: `((2m)/n + n/(2m))^3`.
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2