Advertisements
Advertisements
Question
If `a + 1/a` = p and a ≠ 0; then show that:
`a^3 + 1/a^3 = p(p^2 - 3)`
Sum
Solution
Given that `a + 1/a` = p ...(1)
`(a + 1/a )^3 = a^3 + 1/a^3 + 3( a + 1/a )`
⇒ `a^3 + 1/a^3 = ( a + 1/a )^3 - 3( a + 1/a )`
⇒ `a^3 + 1/a^3 = (p)^3 - 3(p)` ...[From(1)]
⇒ `a^3 + 1/a^3 = p(p^2 - 3)`
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Find the cube of : 3a- 2b
Expand : (3x + 5y + 2z) (3x - 5y + 2z)
Find the cube of: 2a - 5b
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"^3 + (1)/"a"^3`
If `"m"^2 + (1)/"m"^2 = 51`; find the value of `"m"^3 - (1)/"m"^3`
If `x^2 + (1)/x^2 = 18`; find : `x^3 - (1)/x^3`
If a + b = 5 and ab = 2, find a3 + b3.
If m - n = -2 and m3 - n3 = -26, find mn.
Evaluate the following :
(3.29)3 + (6.71)3
Expand: (x + 3)3.