Advertisements
Advertisements
प्रश्न
If `a + 1/a` = p and a ≠ 0; then show that:
`a^3 + 1/a^3 = p(p^2 - 3)`
उत्तर
Given that `a + 1/a` = p ...(1)
`(a + 1/a )^3 = a^3 + 1/a^3 + 3( a + 1/a )`
⇒ `a^3 + 1/a^3 = ( a + 1/a )^3 - 3( a + 1/a )`
⇒ `a^3 + 1/a^3 = (p)^3 - 3(p)` ...[From(1)]
⇒ `a^3 + 1/a^3 = p(p^2 - 3)`
APPEARS IN
संबंधित प्रश्न
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
Use property to evaluate : 133 + (-8)3 + (-5)3
If a ≠ 0 and `a - 1/a` = 3 ; find `a^2 + 1/a^2`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
Find the cube of: 2a - 5b
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If `x + (1)/x = 5`, find the value of `x^2 + (1)/x^2, x^3 + (1)/x^3` and `x^4 + (1)/x^4`.
If `9"a"^2 + (1)/(9"a"^2) = 23`; find the value of `27"a"^3 + (1)/(27"a"^3)`
Evaluate the following :
(8.12)3 - (3.12)3
Expand: (41)3