Advertisements
Advertisements
प्रश्न
If a + 2b = 5; then show that : a3 + 8b3 + 30ab = 125.
उत्तर
Given that a + 2b = 5
We need to find a3 + 8b3 + 30ab
Now consider the cube of a + 2b
( a + 2b )3 = a3 + (2b)3 + 3 × a × 2b × ( a + 2b )
( a + 2b )3 = a3 + 8b3 + 6ab × ( a + 2b )
53 = a3 + 8b3 + 6ab × 5 [ ∵ a + 2b = 5 ]
125 = a3 + 8b3 + 30ab
Thus the value of a3 + 8b3 + 30ab is 125.
APPEARS IN
संबंधित प्रश्न
Simplify.
(3r − 2k)3 + (3r + 2k)3
If a2 + `1/a^2 = 47` and a ≠ 0 find :
- `a + 1/a`
- `a^3 + 1/a^3`
If `3x - (1)/(3x) = 9`; find the value of `27x^3 - (1)/(27x^3)`.
If `"p" + (1)/"p" = 6`; find : `"p"^3 + (1)/"p"^3`
If 2a - 3b = 10 and ab = 16; find the value of 8a3 - 27b3.
Evaluate the following :
(8.12)3 - (3.12)3
Expand: `((2m)/n + n/(2m))^3`.
Expand (104)3
Find the volume of the cube whose side is (x + 1) cm
a3 + b3 = (a + b)3 = __________