Advertisements
Advertisements
प्रश्न
If `( a + 1/a )^2 = 3 "and a ≠ 0; then show:" a^3 + 1/a^3 = 0`.
उत्तर
Given that `( a + 1/a )^2 = 3`
⇒ `a + 1/a = +- sqrt3` ...(1)
We need to find `a^3 + 1/a^3`
Consider the identity,
`( a + 1/a )^3 = a^3 + 1/a^3 + 3( a + 1/a )`
⇒ `a^3 + 1/a^3 = ( +- sqrt3 )^3 - 3( +-sqrt3 )` ...[From (1)]
⇒ `a^3 + 1/a^3 = +-3sqrt3 - 3(+- sqrt3 )`
⇒ `a^3 + 1/a^3 = 0`
APPEARS IN
संबंधित प्रश्न
Find the cube of : `( 3a - 1/a ) (a ≠ 0 )`
If `a + 1/a` = p and a ≠ 0; then show that:
`a^3 + 1/a^3 = p(p^2 - 3)`
If 4x2 + y2 = a and xy = b, find the value of 2x + y.
If 2x - 3y = 10 and xy = 16; find the value of 8x3 - 27y3.
Find the cube of: 4x + 7y
If `"a" - (1)/"a" = 7`, find `"a"^2 + (1)/"a"^2 , "a"^2 - (1)/"a"^2` and `"a"^3 - (1)/"a"^3`
Expand: (3x + 4y)3.
If `"a" + 1/"a"` = 6, then find the value of `"a"^3 + 1/"a"^3`
Expand (2a + 5)3
(p + q)(p2 – pq + q2) is equal to _____________