Advertisements
Advertisements
Question
If `( a + 1/a )^2 = 3 "and a ≠ 0; then show:" a^3 + 1/a^3 = 0`.
Sum
Solution
Given that `( a + 1/a )^2 = 3`
⇒ `a + 1/a = +- sqrt3` ...(1)
We need to find `a^3 + 1/a^3`
Consider the identity,
`( a + 1/a )^3 = a^3 + 1/a^3 + 3( a + 1/a )`
⇒ `a^3 + 1/a^3 = ( +- sqrt3 )^3 - 3( +-sqrt3 )` ...[From (1)]
⇒ `a^3 + 1/a^3 = +-3sqrt3 - 3(+- sqrt3 )`
⇒ `a^3 + 1/a^3 = 0`
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Expand.
(k + 4)3
Find the cube of: `"a" - (1)/"a" + "b"`
If `x^2 + (1)/x^2 = 18`; find : `x^3 - (1)/x^3`
If a + b = 5 and ab = 2, find a3 + b3.
If p - q = -1 and pq = -12, find p3 - q3
Evaluate the following :
(3.29)3 + (6.71)3
Expand: `[x + 1/y]^3`
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`
Expand (3 + m)3