Advertisements
Advertisements
Question
Find the cube of: `"a" - (1)/"a" + "b"`
Sum
Solution
Using (a + b + c)3
= a3 + b3 + c3 + 3a2b + 3a2c + 3b2a + 3c2a + 6abc
`("a" - 1/"a" + "b")`
= `"a"^3 + (-1/"a")^3 + "b"^3 + 3"a"^2(-1/"a") + 3"a"^2 + 3(-1/"a")^2 "b" + 3(-1/"a")^2 "a" + 3"b"^2"a" + 3"b"^2(-1/"a") + 6"a"(-1/"a")"b"`
= `"a"^3 - (1)/"a"^3 + "b"^3 - 3"a" + 3"a"^2"b" + (3"b")/"a"^2 + (3)/"a" + 3"b"^2"a" - (3"b"^2)/"a" - 6"b"`.
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Expand.
(7 + m)3
Expand.
`((5x)/y + y/(5x))^3`
If a2 + `1/a^2 = 47` and a ≠ 0 find :
- `a + 1/a`
- `a^3 + 1/a^3`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
If `"m"^2 + (1)/"m"^2 = 51`; find the value of `"m"^3 - (1)/"m"^3`
If a + b = 5 and ab = 2, find a3 + b3.
Evaluate the following :
(8.12)3 - (3.12)3
Expand: `[x + 1/y]^3`
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2
Expand (3 + m)3