Advertisements
Advertisements
Question
Expand.
`((5x)/y + y/(5x))^3`
Solution
`((5x)/y + y/(5x))^3`
(a + b)3 = a3 + 3a2b + 3ab2 + b3
= `((5x)/y)^3 + 3 xx ((5x)/y)^2 xx (y/(5x)) + 3 xx ((5x)/y) xx (y/(5x))^2 + (y/(5x))^3`
= `(125x^3)/(y^3) + 3 xx (25x^2)/(y^2) xx y/(5x) + 3 xx (5x)/y xx (y^2)/(25x^2) + y^3/(125x^3)`
= `(125x^3)/(y^3) + (3 xx 25x)/y xx 1/5 + 3 xx 5 xx y/(25x) + (y^3)/(125x^3)`
= `(125x^3)/(y^3) + (15x)/y + (3y)/(5x) + (y^3)/(125x^3)`
∴ `((5x)/y + y/(5x))^3 = (125x^3)/(y^3) + (15x)/y + (3y)/(5x) + (y^3)/(125x^3)`
RELATED QUESTIONS
Use property to evaluate : 133 + (-8)3 + (-5)3
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^2 + 1/a^2 )`
Find the cube of: `3"a" + (1)/(3"a")`
If `9"a"^2 + (1)/(9"a"^2) = 23`; find the value of `27"a"^3 + (1)/(27"a"^3)`
If `"p" + (1)/"p" = 6`; find : `"p"^3 + (1)/"p"^3`
If `"r" - (1)/"r" = 4`; find : `"r"^3 - (1)/"r"^3`
Evaluate the following :
(3.29)3 + (6.71)3
If `"a" + 1/"a"` = 6, then find the value of `"a"^3 + 1/"a"^3`
Expand (3 + m)3
Find the volume of the cube whose side is (x + 1) cm