Advertisements
Advertisements
प्रश्न
Expand.
`((5x)/y + y/(5x))^3`
उत्तर
`((5x)/y + y/(5x))^3`
(a + b)3 = a3 + 3a2b + 3ab2 + b3
= `((5x)/y)^3 + 3 xx ((5x)/y)^2 xx (y/(5x)) + 3 xx ((5x)/y) xx (y/(5x))^2 + (y/(5x))^3`
= `(125x^3)/(y^3) + 3 xx (25x^2)/(y^2) xx y/(5x) + 3 xx (5x)/y xx (y^2)/(25x^2) + y^3/(125x^3)`
= `(125x^3)/(y^3) + (3 xx 25x)/y xx 1/5 + 3 xx 5 xx y/(25x) + (y^3)/(125x^3)`
= `(125x^3)/(y^3) + (15x)/y + (3y)/(5x) + (y^3)/(125x^3)`
∴ `((5x)/y + y/(5x))^3 = (125x^3)/(y^3) + (15x)/y + (3y)/(5x) + (y^3)/(125x^3)`
संबंधित प्रश्न
Simplify.
(3r − 2k)3 + (3r + 2k)3
If `( a + 1/a )^2 = 3 "and a ≠ 0; then show:" a^3 + 1/a^3 = 0`.
Use property to evaluate : 383 + (-26)3 + (-12)3
Expand : (3x - 5y - 2z) (3x - 5y + 2z)
If X ≠ 0 and X + `1/"X"` = 2 ; then show that :
`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`
Find the cube of: 2a - 5b
If `3x - (1)/(3x) = 9`; find the value of `27x^3 - (1)/(27x^3)`.
If `"a" + (1)/"a" = "p"`; then show that `"a"^3 + (1)/"a"^3 = "p"("p"^2 - 3)`
If a + b + c = 0; then show that a3 + b3 + c3 = 3abc.
Evaluate the following :
(5.45)3 + (3.55)3