Advertisements
Advertisements
प्रश्न
If `( a + 1/a )^2 = 3 "and a ≠ 0; then show:" a^3 + 1/a^3 = 0`.
उत्तर
Given that `( a + 1/a )^2 = 3`
⇒ `a + 1/a = +- sqrt3` ...(1)
We need to find `a^3 + 1/a^3`
Consider the identity,
`( a + 1/a )^3 = a^3 + 1/a^3 + 3( a + 1/a )`
⇒ `a^3 + 1/a^3 = ( +- sqrt3 )^3 - 3( +-sqrt3 )` ...[From (1)]
⇒ `a^3 + 1/a^3 = +-3sqrt3 - 3(+- sqrt3 )`
⇒ `a^3 + 1/a^3 = 0`
APPEARS IN
संबंधित प्रश्न
Expand.
(7x + 8y)3
If `a + 1/a` = p and a ≠ 0; then show that:
`a^3 + 1/a^3 = p(p^2 - 3)`
If a + 2b + c = 0; then show that: a3 + 8b3 + c3 = 6abc.
Use property to evaluate : 383 + (-26)3 + (-12)3
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
If `"r" - (1)/"r" = 4`; find : `"r"^3 - (1)/"r"^3`
If a + b + c = 0; then show that a3 + b3 + c3 = 3abc.
If x + 2y = 5, then show that x3 + 8y3 + 30xy = 125.
Expand (3p + 4q)3
a3 + b3 = (a + b)3 = __________