Advertisements
Advertisements
प्रश्न
If a + 2b = 5; then show that : a3 + 8b3 + 30ab = 125.
उत्तर
Given that a + 2b = 5
We need to find a3 + 8b3 + 30ab
Now consider the cube of a + 2b
( a + 2b )3 = a3 + (2b)3 + 3 × a × 2b × ( a + 2b )
( a + 2b )3 = a3 + 8b3 + 6ab × ( a + 2b )
53 = a3 + 8b3 + 6ab × 5 [ ∵ a + 2b = 5 ]
125 = a3 + 8b3 + 30ab
Thus the value of a3 + 8b3 + 30ab is 125.
APPEARS IN
संबंधित प्रश्न
Expand.
(k + 4)3
Expand.
`((5x)/y + y/(5x))^3`
Find the cube of : 3a- 2b
Find the cube of : `( 3a - 1/a ) (a ≠ 0 )`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
Find the cube of: `"a" - (1)/"a" + "b"`
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If a + b + c = 0; then show that a3 + b3 + c3 = 3abc.
Simplify:
(a + b)3 + (a - b)3
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`