Advertisements
Advertisements
प्रश्न
Find the cube of: `"a" - (1)/"a" + "b"`
उत्तर
Using (a + b + c)3
= a3 + b3 + c3 + 3a2b + 3a2c + 3b2a + 3c2a + 6abc
`("a" - 1/"a" + "b")`
= `"a"^3 + (-1/"a")^3 + "b"^3 + 3"a"^2(-1/"a") + 3"a"^2 + 3(-1/"a")^2 "b" + 3(-1/"a")^2 "a" + 3"b"^2"a" + 3"b"^2(-1/"a") + 6"a"(-1/"a")"b"`
= `"a"^3 - (1)/"a"^3 + "b"^3 - 3"a" + 3"a"^2"b" + (3"b")/"a"^2 + (3)/"a" + 3"b"^2"a" - (3"b"^2)/"a" - 6"b"`.
APPEARS IN
संबंधित प्रश्न
Find the cube of : 3a- 2b
Find the cube of : 5a + 3b
If `( a + 1/a )^2 = 3 "and a ≠ 0; then show:" a^3 + 1/a^3 = 0`.
If 2x - 3y = 10 and xy = 16; find the value of 8x3 - 27y3.
If `"p" + (1)/"p" = 6`; find : `"p"^3 + (1)/"p"^3`
If a + b + c = 0; then show that a3 + b3 + c3 = 3abc.
If a + b = 5 and ab = 2, find a3 + b3.
If x + 2y = 5, then show that x3 + 8y3 + 30xy = 125.
Evaluate the following :
(3.29)3 + (6.71)3
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`