Advertisements
Advertisements
प्रश्न
Find the cube of: `"a" - (1)/"a" + "b"`
उत्तर
Using (a + b + c)3
= a3 + b3 + c3 + 3a2b + 3a2c + 3b2a + 3c2a + 6abc
`("a" - 1/"a" + "b")`
= `"a"^3 + (-1/"a")^3 + "b"^3 + 3"a"^2(-1/"a") + 3"a"^2 + 3(-1/"a")^2 "b" + 3(-1/"a")^2 "a" + 3"b"^2"a" + 3"b"^2(-1/"a") + 6"a"(-1/"a")"b"`
= `"a"^3 - (1)/"a"^3 + "b"^3 - 3"a" + 3"a"^2"b" + (3"b")/"a"^2 + (3)/"a" + 3"b"^2"a" - (3"b"^2)/"a" - 6"b"`.
APPEARS IN
संबंधित प्रश्न
Find the cube of : `2a + 1/(2a)` ( a ≠ 0 )
If `a + 1/a` = p and a ≠ 0; then show that:
`a^3 + 1/a^3 = p(p^2 - 3)`
Expand : (3x - 5y - 2z) (3x - 5y + 2z)
Find the cube of: 2a - 5b
Find the cube of: 4x + 7y
Find the cube of: `3"a" + (1)/(3"a")`
If `9"a"^2 + (1)/(9"a"^2) = 23`; find the value of `27"a"^3 + (1)/(27"a"^3)`
If a + b = 5 and ab = 2, find a3 + b3.
Evaluate the following :
(5.45)3 + (3.55)3
Expand (2a + 5)3