Advertisements
Advertisements
प्रश्न
Find the cube of : `2a + 1/(2a)` ( a ≠ 0 )
उत्तर
( a + b )3 = a3 + 3ab( a + b ) + b3
=`( 2a)^3 + (1/(2a))^3 = 3 xx cancel(2a) xx1/cancel(2a)( 2a + 1/(2a))`
= `8a^3 + 1/(8a^3) + 3 (2a + 1/(2a))`
= `8a^3 + 1/(8a^3) + 6a + 3/(2a)`
APPEARS IN
संबंधित प्रश्न
Find the cube of : `( 3a - 1/a ) (a ≠ 0 )`
If a2 + `1/a^2 = 47` and a ≠ 0 find :
- `a + 1/a`
- `a^3 + 1/a^3`
If `a + 1/a` = p and a ≠ 0; then show that:
`a^3 + 1/a^3 = p(p^2 - 3)`
Two positive numbers x and y are such that x > y. If the difference of these numbers is 5 and their product is 24, find:
(i) Sum of these numbers
(ii) Difference of their cubes
(iii) Sum of their cubes.
Find the cube of: 2a - 5b
Find the cube of: 4x + 7y
Find the cube of: `4"p" - (1)/"p"`
If `"m"^2 + (1)/"m"^2 = 51`; find the value of `"m"^3 - (1)/"m"^3`
Evaluate the following :
(8.12)3 - (3.12)3
Expand (2a + 5)3