Advertisements
Advertisements
प्रश्न
Two positive numbers x and y are such that x > y. If the difference of these numbers is 5 and their product is 24, find:
(i) Sum of these numbers
(ii) Difference of their cubes
(iii) Sum of their cubes.
उत्तर
Given x - y = 5 and xy = 24 (x>y)
(x + y)2 = (x - y)2 + 4xy = 25 + 96 = 121
So, x + y = 11; sum of these numbers is 11.
Cubing on both sides gives
(x - y)3 = 53
x3 - y3 - 3xy(x - y) = 125
x3 - y3 - 72(5) = 125
x3 - y3= 125 + 360 = 485
So, difference of their cubes is 485.
Cubing both sides, we get
(x + y)3 = 113
x3 + y3 + 3xy(x + y) = 1331
x3 + y3 = 1331 - 72(11) = 1331 - 792 = 539
So, sum of their cubes is 539.
APPEARS IN
संबंधित प्रश्न
Find the cube of : 5a + 3b
Find the cube of: 2a - 5b
Find the cube of: `4"p" - (1)/"p"`
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If `x^2 + (1)/x^2 = 18`; find : `x^3 - (1)/x^3`
If `"a" + (1)/"a" = "p"`; then show that `"a"^3 + (1)/"a"^3 = "p"("p"^2 - 3)`
Evaluate the following :
(3.29)3 + (6.71)3
Expand: (x + 3)3.
Expand: `[x + 1/y]^3`
Expand (3 + m)3