Advertisements
Advertisements
प्रश्न
The sum of two numbers is 9 and their product is 20. Find the sum of their (i) Squares (ii) Cubes
उत्तर
Given sum of two numbers is 9 and their product is 20.
Let the numbers be a and b.
a + b = 9
ab = 20
Squaring on both sides gives
(a+b)2 = 92
a2 + b2 + 2ab = 81
a2 + b2 + 40 = 81
So sum of squares is 81 - 40 = 41
Cubing on both sides gives
(a + b)3 = 93
a3 + b3 + 3ab(a + b) = 729
a3 + b3 + 60(9) = 729
a3 + b3 = 729 - 540 = 189
So the sum of cubes is 189.
APPEARS IN
संबंधित प्रश्न
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
If `( a + 1/a )^2 = 3 "and a ≠ 0; then show:" a^3 + 1/a^3 = 0`.
If a + 2b + c = 0; then show that: a3 + 8b3 + c3 = 6abc.
Find the cube of: 4x + 7y
If `3x - (1)/(3x) = 9`; find the value of `27x^3 - (1)/(27x^3)`.
If `"r" - (1)/"r" = 4`; find : `"r"^3 - (1)/"r"^3`
If `"a" + (1)/"a" = "p"`; then show that `"a"^3 + (1)/"a"^3 = "p"("p"^2 - 3)`
If a + b = 5 and ab = 2, find a3 + b3.
If 2a - 3b = 10 and ab = 16; find the value of 8a3 - 27b3.
Expand (2a + 5)3