Advertisements
Advertisements
प्रश्न
If `3x - (1)/(3x) = 9`; find the value of `27x^3 - (1)/(27x^3)`.
बेरीज
उत्तर
`3x - (1)/(3x) = 9`
Using `("a" - (1)/"a")^3`
= `"a"^3 - (1)/"a"^3 - 3("a" - 1/"a")`, we get :
`(3x - 1/(3x))^3`
= `(3x)^3 - (1/(3x))^3 -3(3x - 1/(3x))`
⇒ 729 = `27x^3 - (1)/(27x^3) - 3(9)`
⇒ `27x^3 - (1)/(27x^3)`
= 729 + 27
= 756.
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Expand.
(7 + m)3
Find the cube of : 3a- 2b
If `( a + 1/a )^2 = 3 "and a ≠ 0; then show:" a^3 + 1/a^3 = 0`.
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
Find the cube of: `3"a" + (1)/(3"a")`
If `9"a"^2 + (1)/(9"a"^2) = 23`; find the value of `27"a"^3 + (1)/(27"a"^3)`
If a + b + c = 0; then show that a3 + b3 + c3 = 3abc.
Evaluate the following :
(3.29)3 + (6.71)3
(p + q)(p2 – pq + q2) is equal to _____________
a3 + b3 = (a + b)3 = __________