Advertisements
Advertisements
प्रश्न
If a + b + c = 0; then show that a3 + b3 + c3 = 3abc.
उत्तर
a + b + c = 0 ...(i)
⇒ (a + b) + c = 0
Cubing both sides
⇒ (a + b)3 + c3 + 3(a + b) (c) (a+ b + c) = 0
⇒ a3 + b3 + 3ab (a + b) + c3 + 0 = 0
⇒ a3 + b3 + c3 + 3ab (a + b) = 0 ...(2)
Using (i), we get, a + b = -c From (2),
a3 + b3 + c3 + 3ab (-c) = 0
⇒ a3 + b3 + c3 = 3abc.
APPEARS IN
संबंधित प्रश्न
Expand.
(52)3
Use property to evaluate : 73 + 33 + (-10)3
Use property to evaluate : 93 - 53 - 43
If a ≠ 0 and `a - 1/a` = 3 ; find `a^2 + 1/a^2`
If X ≠ 0 and X + `1/"X"` = 2 ; then show that :
`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
Simplify:
(a + b)3 + (a - b)3
Evaluate the following :
(5.45)3 + (3.55)3
Expand: `((2m)/n + n/(2m))^3`.
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2