Advertisements
Advertisements
प्रश्न
If `("a" + 1/"a")^2 = 3`; then show that `"a"^3 + (1)/"a"^3 = 0`
बेरीज
उत्तर
`("a" + 1/"a")^2 = 3`
⇒ `"a" + (1)/"a" = sqrt(3)`
Now, `("a" + 1/"a")^3`
= `"a"^3 + (1)/"a"^3 + 3("a" + 1/"a")`
⇒ `(sqrt(3))^3`
= `"a"^3 + (1)/"a"^3 + 3(sqrt(3))`
⇒ `"a"^3 + (1)/"a"^3`
= `3sqrt(3) - 3sqrt(3)`
= 0.
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Expand.
(101)3
If 4x2 + y2 = a and xy = b, find the value of 2x + y.
Expand : (3x + 5y + 2z) (3x - 5y + 2z)
Find the cube of: `(2"m")/(3"n") + (3"n")/(2"m")`
If `"a" + (1)/"a" = "p"`; then show that `"a"^3 + (1)/"a"^3 = "p"("p"^2 - 3)`
If a + b = 5 and ab = 2, find a3 + b3.
Simplify:
(a + b)3 + (a - b)3
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`
Expand (3 + m)3
Find the volume of the cube whose side is (x + 1) cm