Advertisements
Advertisements
प्रश्न
If `"a" + (1)/"a" = "p"`; then show that `"a"^3 + (1)/"a"^3 = "p"("p"^2 - 3)`
बेरीज
उत्तर
`"a" + (1)/"a" = "p"`
`("a" + 1/"a")^3`
= `"a"^3 + (1)/"a"^3 + 3("a" + 1/"a")`
⇒ p3 = `"a"^3 + (1)/"a"^3 + 3("p")`
⇒ `"a"^3 + (1)/"a"^3`
= p3 - 3p
= p(p2 - 3).
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Expand.
(7 + m)3
Expand.
`(x + 1/x)^3`
Expand.
`(2m + 1/5)^3`
If `a + 1/a` = p and a ≠ 0; then show that:
`a^3 + 1/a^3 = p(p^2 - 3)`
The sum of two numbers is 9 and their product is 20. Find the sum of their (i) Squares (ii) Cubes
Expand : (3x + 5y + 2z) (3x - 5y + 2z)
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"^3 + (1)/"a"^3`
If `x^2 + (1)/x^2 = 18`; find : `x^3 - (1)/x^3`
Simplify:
(a + b)3 + (a - b)3