Advertisements
Advertisements
प्रश्न
Expand.
`(x + 1/x)^3`
उत्तर
Here, a = x, b = `1/x`
We know that,
(a + b)3 = a3 + 3a2b + 3ab2 + b3
∴ `(x + 1/x)^3 = x^3 + 3(x)^2(1/x) + 3(x)(1/x)^2 + (1/x)^3`
= `x^3 + 3x^2 xx 1/x + 3x xx 1/x^2 + 1/x^3`
= `x^3 + 3x + 3/x + 1/x^3`
∴ `(x + 1/x)^3 = x^3 + 3x + 3/x + 1/x^3`
संबंधित प्रश्न
Find the cube of : 3a- 2b
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
Use property to evaluate : 383 + (-26)3 + (-12)3
If X ≠ 0 and X + `1/"X"` = 2 ; then show that :
`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`
If `"a" - (1)/"a" = 7`, find `"a"^2 + (1)/"a"^2 , "a"^2 - (1)/"a"^2` and `"a"^3 - (1)/"a"^3`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"^3 + (1)/"a"^3`
If `9"a"^2 + (1)/(9"a"^2) = 23`; find the value of `27"a"^3 + (1)/(27"a"^3)`
If `"a" + (1)/"a" = "p"`; then show that `"a"^3 + (1)/"a"^3 = "p"("p"^2 - 3)`
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2
(p + q)(p2 – pq + q2) is equal to _____________