Advertisements
Advertisements
प्रश्न
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"^3 + (1)/"a"^3`
उत्तर
Using (a + b)2 = a2 + 2ab + b2
`("a" + 1/"a")^2`
= `"a"^2 + 2"a"(1/"a") + (1/"a")^2`
⇒ `("a" + 1/"a")^2 = "a"^2 + 2 + (1)/"a"^2`
⇒ `("a" + 1/"a")^2 = "a"^2 + (1)/"a"^2 + 2`
⇒ `("a" + 1/"a")^2` = 14 + 2
⇒ `("a" + 1/"a")^2` = 16
⇒ `"a" + (1)/"a"` = ±4
`"a"^3 + (1)/"a"^3`
= `("a" + 1/"a")("a"^2 + 1/"a"^2 - 1)` ....[Using a3 + b3 = (a + b)(a2 + b2 - ab)]
= (±4)(14 - 1)
= (±4)(13)
= ±52.
APPEARS IN
संबंधित प्रश्न
Expand.
(101)3
If a + 2b = 5; then show that : a3 + 8b3 + 30ab = 125.
If `( a + 1/a )^2 = 3 "and a ≠ 0; then show:" a^3 + 1/a^3 = 0`.
If a ≠ 0 and `a - 1/a` = 3 ; find `a^2 + 1/a^2`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^2 + 1/a^2 )`
If `x + (1)/x = 5`, find the value of `x^2 + (1)/x^2, x^3 + (1)/x^3` and `x^4 + (1)/x^4`.
If 2a - 3b = 10 and ab = 16; find the value of 8a3 - 27b3.
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2
Expand (3 + m)3
Expand (52)3