Advertisements
Advertisements
प्रश्न
Expand (52)3
बेरीज
उत्तर
(52)3 = (50 + 2)3
Comparing (50 + 2)3 with (a + b)3 we have a = 50 and b = 2
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(50 + 2)3 = 503 + 3(50)2(2) + 3(50)(2)2 + 23
523 = 1,25,000 + 6(2,500) + 150(4) + 8
= 1,25,000 + 15,000 + 600 + 8
523 = 1,40,608
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Algebra - Exercise 3.3 [पृष्ठ ९१]
APPEARS IN
संबंधित प्रश्न
Expand.
(52)3
Expand.
`(2m + 1/5)^3`
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
If `a + 1/a` = p and a ≠ 0; then show that:
`a^3 + 1/a^3 = p(p^2 - 3)`
If `( a + 1/a )^2 = 3 "and a ≠ 0; then show:" a^3 + 1/a^3 = 0`.
Find the cube of: `3"a" + (1)/(3"a")`
If `"m"^2 + (1)/"m"^2 = 51`; find the value of `"m"^3 - (1)/"m"^3`
If a + 2b + c = 0; then show that a3 + 8b3 + c3 = 6abc
If a + b = 5 and ab = 2, find a3 + b3.
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2