Advertisements
Advertisements
प्रश्न
If `"m"^2 + (1)/"m"^2 = 51`; find the value of `"m"^3 - (1)/"m"^3`
उत्तर
`"m"^2 + (1)/"m"^2 = 51`
We know that
`("m" - 1/"m")^2`
= `"m"^2 + (1)/"m"^2 - 2`
⇒ `("m" - 1/"m")^2` = 51 - 2
⇒ `("m" - 1/"m")^2` = 49 = 72
⇒ `"m" - 1/"m"` = 7
⇒ `("m" - 1/"m")^3` = 73
⇒ `"m"^3 - (1)/"m"^3 - 3("m" - 1/"m")` = 343
⇒ `"m"^3 - (1)/"m"^3 - 3 xx 7` = 343
⇒ `"m"^3 - (1)/"m"^3`
= 343 + 21
= 364.
APPEARS IN
संबंधित प्रश्न
Expand.
(101)3
Expand.
`(x + 1/x)^3`
Find the cube of : 3a- 2b
If `a + 1/a` = p and a ≠ 0; then show that:
`a^3 + 1/a^3 = p(p^2 - 3)`
If a + 2b + c = 0; then show that: a3 + 8b3 + c3 = 6abc.
Use property to evaluate : 383 + (-26)3 + (-12)3
If 4x2 + y2 = a and xy = b, find the value of 2x + y.
If a ≠ 0 and `a - 1/a` = 3 ; find `a^2 + 1/a^2`
Simplify:
`("a" + 1/"a")^3 - ("a" - 1/"a")^3`
(p + q)(p2 – pq + q2) is equal to _____________