Advertisements
Advertisements
प्रश्न
If a + 2b + c = 0; then show that: a3 + 8b3 + c3 = 6abc.
उत्तर
Given that a + 2b + c = 0
∴ a + 2b = -c ...(1)
Now consider the expansion of (a + 2b)3
(a + 2b)3 = (-c)3
⇒ a3 + (2b)3 + 3 × a × 2b × (a + 2b) = (-c)3
⇒ a3 + 8b3 + 3 × a × 2b × (-c) = (-c)3 ...[From (1)]
⇒ a3 + 8b3 - 6abc = -c3
⇒ a3 + 8b3 + c3 = 6abc
Hence, proved.
APPEARS IN
संबंधित प्रश्न
Expand.
`(2m + 1/5)^3`
If a + 2b = 5; then show that : a3 + 8b3 + 30ab = 125.
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If a + b + c = 0; then show that a3 + b3 + c3 = 3abc.
If a + 2b + c = 0; then show that a3 + 8b3 + c3 = 6abc
If x + 2y = 5, then show that x3 + 8y3 + 30xy = 125.
Evaluate the following :
(5.45)3 + (3.55)3
Evaluate the following :
(8.12)3 - (3.12)3
Expand (52)3
a3 + b3 = (a + b)3 = __________