Advertisements
Advertisements
Question
If a + 2b + c = 0; then show that: a3 + 8b3 + c3 = 6abc.
Sum
Solution
Given that a + 2b + c = 0
∴ a + 2b = -c ...(1)
Now consider the expansion of (a + 2b)3
(a + 2b)3 = (-c)3
⇒ a3 + (2b)3 + 3 × a × 2b × (a + 2b) = (-c)3
⇒ a3 + 8b3 + 3 × a × 2b × (-c) = (-c)3 ...[From (1)]
⇒ a3 + 8b3 - 6abc = -c3
⇒ a3 + 8b3 + c3 = 6abc
Hence, proved.
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Expand.
(k + 4)3
If `a + 1/a` = p and a ≠ 0; then show that:
`a^3 + 1/a^3 = p(p^2 - 3)`
Use property to evaluate : 383 + (-26)3 + (-12)3
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
Find the cube of: `3"a" + (1)/(3"a")`
If `"r" - (1)/"r" = 4`; find : `"r"^3 - (1)/"r"^3`
If p - q = -1 and pq = -12, find p3 - q3
Expand (52)3
Find the volume of the cube whose side is (x + 1) cm