Advertisements
Advertisements
प्रश्न
If a + 2b + c = 0; then show that: a3 + 8b3 + c3 = 6abc.
उत्तर
Given that a + 2b + c = 0
∴ a + 2b = -c ...(1)
Now consider the expansion of (a + 2b)3
(a + 2b)3 = (-c)3
⇒ a3 + (2b)3 + 3 × a × 2b × (a + 2b) = (-c)3
⇒ a3 + 8b3 + 3 × a × 2b × (-c) = (-c)3 ...[From (1)]
⇒ a3 + 8b3 - 6abc = -c3
⇒ a3 + 8b3 + c3 = 6abc
Hence, proved.
APPEARS IN
संबंधित प्रश्न
Use property to evaluate : 73 + 33 + (-10)3
If 4x2 + y2 = a and xy = b, find the value of 2x + y.
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If a + b + c = 0; then show that a3 + b3 + c3 = 3abc.
If a + 2b + c = 0; then show that a3 + 8b3 + c3 = 6abc
If a + b = 5 and ab = 2, find a3 + b3.
Evaluate the following :
(5.45)3 + (3.55)3
Evaluate the following :
(8.12)3 - (3.12)3
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2
Expand (3 + m)3