Advertisements
Advertisements
प्रश्न
If `"m"^2 + (1)/"m"^2 = 51`; find the value of `"m"^3 - (1)/"m"^3`
उत्तर
`"m"^2 + (1)/"m"^2 = 51`
We know that
`("m" - 1/"m")^2`
= `"m"^2 + (1)/"m"^2 - 2`
⇒ `("m" - 1/"m")^2` = 51 - 2
⇒ `("m" - 1/"m")^2` = 49 = 72
⇒ `"m" - 1/"m"` = 7
⇒ `("m" - 1/"m")^3` = 73
⇒ `"m"^3 - (1)/"m"^3 - 3("m" - 1/"m")` = 343
⇒ `"m"^3 - (1)/"m"^3 - 3 xx 7` = 343
⇒ `"m"^3 - (1)/"m"^3`
= 343 + 21
= 364.
APPEARS IN
संबंधित प्रश्न
Expand.
(7x + 8y)3
Find the cube of : `2a + 1/(2a)` ( a ≠ 0 )
If a2 + `1/a^2 = 47` and a ≠ 0 find :
- `a + 1/a`
- `a^3 + 1/a^3`
Use property to evaluate : 73 + 33 + (-10)3
Find the cube of: 2a - 5b
Find the cube of: `"a" - (1)/"a" + "b"`
If `"p" + (1)/"p" = 6`; find : `"p"^3 + (1)/"p"^3`
If a + 2b + c = 0; then show that a3 + 8b3 + c3 = 6abc
If m - n = -2 and m3 - n3 = -26, find mn.
If `"a" + 1/"a"` = 6, then find the value of `"a"^3 + 1/"a"^3`