Advertisements
Advertisements
प्रश्न
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"^3 + (1)/"a"^3`
उत्तर
Using (a + b)2 = a2 + 2ab + b2
`("a" + 1/"a")^2`
= `"a"^2 + 2"a"(1/"a") + (1/"a")^2`
⇒ `("a" + 1/"a")^2 = "a"^2 + 2 + (1)/"a"^2`
⇒ `("a" + 1/"a")^2 = "a"^2 + (1)/"a"^2 + 2`
⇒ `("a" + 1/"a")^2` = 14 + 2
⇒ `("a" + 1/"a")^2` = 16
⇒ `"a" + (1)/"a"` = ±4
`"a"^3 + (1)/"a"^3`
= `("a" + 1/"a")("a"^2 + 1/"a"^2 - 1)` ....[Using a3 + b3 = (a + b)(a2 + b2 - ab)]
= (±4)(14 - 1)
= (±4)(13)
= ±52.
APPEARS IN
संबंधित प्रश्न
Expand.
(k + 4)3
If `( a + 1/a )^2 = 3 "and a ≠ 0; then show:" a^3 + 1/a^3 = 0`.
Use property to evaluate : 133 + (-8)3 + (-5)3
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If a + b = 5 and ab = 2, find a3 + b3.
If p - q = -1 and pq = -12, find p3 - q3
If m - n = -2 and m3 - n3 = -26, find mn.
Expand: (x + 3)3.
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2