Advertisements
Advertisements
Question
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"^3 + (1)/"a"^3`
Solution
Using (a + b)2 = a2 + 2ab + b2
`("a" + 1/"a")^2`
= `"a"^2 + 2"a"(1/"a") + (1/"a")^2`
⇒ `("a" + 1/"a")^2 = "a"^2 + 2 + (1)/"a"^2`
⇒ `("a" + 1/"a")^2 = "a"^2 + (1)/"a"^2 + 2`
⇒ `("a" + 1/"a")^2` = 14 + 2
⇒ `("a" + 1/"a")^2` = 16
⇒ `"a" + (1)/"a"` = ±4
`"a"^3 + (1)/"a"^3`
= `("a" + 1/"a")("a"^2 + 1/"a"^2 - 1)` ....[Using a3 + b3 = (a + b)(a2 + b2 - ab)]
= (±4)(14 - 1)
= (±4)(13)
= ±52.
APPEARS IN
RELATED QUESTIONS
Expand.
(52)3
Expand : (3x - 5y - 2z) (3x - 5y + 2z)
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
Find the cube of: `(2"m")/(3"n") + (3"n")/(2"m")`
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If `("a" + 1/"a")^2 = 3`; then show that `"a"^3 + (1)/"a"^3 = 0`
If x3 + y3 = 9 and x + y = 3, find xy.
Simplify:
(a + b)3 + (a - b)3
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`
Expand (3 + m)3