Advertisements
Advertisements
Question
If `("a" + 1/"a")^2 = 3`; then show that `"a"^3 + (1)/"a"^3 = 0`
Solution
`("a" + 1/"a")^2 = 3`
⇒ `"a" + (1)/"a" = sqrt(3)`
Now, `("a" + 1/"a")^3`
= `"a"^3 + (1)/"a"^3 + 3("a" + 1/"a")`
⇒ `(sqrt(3))^3`
= `"a"^3 + (1)/"a"^3 + 3(sqrt(3))`
⇒ `"a"^3 + (1)/"a"^3`
= `3sqrt(3) - 3sqrt(3)`
= 0.
APPEARS IN
RELATED QUESTIONS
Expand.
`(2m + 1/5)^3`
Two positive numbers x and y are such that x > y. If the difference of these numbers is 5 and their product is 24, find:
(i) Sum of these numbers
(ii) Difference of their cubes
(iii) Sum of their cubes.
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^2 + 1/a^2 )`
Find the cube of: `3"a" + (1)/(3"a")`
Find the cube of: `(2"m")/(3"n") + (3"n")/(2"m")`
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If `"a" + (1)/"a" = "p"`; then show that `"a"^3 + (1)/"a"^3 = "p"("p"^2 - 3)`
If x + 2y = 5, then show that x3 + 8y3 + 30xy = 125.
Evaluate the following :
(5.45)3 + (3.55)3
Expand (2a + 5)3