Advertisements
Advertisements
प्रश्न
If `("a" + 1/"a")^2 = 3`; then show that `"a"^3 + (1)/"a"^3 = 0`
उत्तर
`("a" + 1/"a")^2 = 3`
⇒ `"a" + (1)/"a" = sqrt(3)`
Now, `("a" + 1/"a")^3`
= `"a"^3 + (1)/"a"^3 + 3("a" + 1/"a")`
⇒ `(sqrt(3))^3`
= `"a"^3 + (1)/"a"^3 + 3(sqrt(3))`
⇒ `"a"^3 + (1)/"a"^3`
= `3sqrt(3) - 3sqrt(3)`
= 0.
APPEARS IN
संबंधित प्रश्न
Use property to evaluate : 93 - 53 - 43
Use property to evaluate : 383 + (-26)3 + (-12)3
Two positive numbers x and y are such that x > y. If the difference of these numbers is 5 and their product is 24, find:
(i) Sum of these numbers
(ii) Difference of their cubes
(iii) Sum of their cubes.
Find the cube of: `3"a" + (1)/(3"a")`
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If m - n = -2 and m3 - n3 = -26, find mn.
If 2a - 3b = 10 and ab = 16; find the value of 8a3 - 27b3.
Simplify:
(a + b)3 + (a - b)3
Evaluate the following :
(3.29)3 + (6.71)3
Expand: `((2m)/n + n/(2m))^3`.