Advertisements
Advertisements
प्रश्न
If 2a - 3b = 10 and ab = 16; find the value of 8a3 - 27b3.
योग
उत्तर
2a - 3b = 10
(2a - 3b)3 = (2a)3 - (3b)3 - 2(2a) (3b) (2a - 3b)
⇒ 1000 = 8a3 - 27b3 - 12(16) (10)
⇒ 8a3 - 27b3
= 1000 + 1920
= 2920.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Expand.
`((5x)/y + y/(5x))^3`
Find the cube of : `2a + 1/(2a)` ( a ≠ 0 )
Find the cube of : `( 3a - 1/a ) (a ≠ 0 )`
Use property to evaluate : 93 - 53 - 43
Two positive numbers x and y are such that x > y. If the difference of these numbers is 5 and their product is 24, find:
(i) Sum of these numbers
(ii) Difference of their cubes
(iii) Sum of their cubes.
If x + 2y = 5, then show that x3 + 8y3 + 30xy = 125.
Simplify:
(a + b)3 + (a - b)3
Expand: (x + 3)3.
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`
Expand (52)3