Advertisements
Advertisements
प्रश्न
Find the cube of : `2a + 1/(2a)` ( a ≠ 0 )
योग
उत्तर
( a + b )3 = a3 + 3ab( a + b ) + b3
=`( 2a)^3 + (1/(2a))^3 = 3 xx cancel(2a) xx1/cancel(2a)( 2a + 1/(2a))`
= `8a^3 + 1/(8a^3) + 3 (2a + 1/(2a))`
= `8a^3 + 1/(8a^3) + 6a + 3/(2a)`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Use property to evaluate : 383 + (-26)3 + (-12)3
The sum of two numbers is 9 and their product is 20. Find the sum of their (i) Squares (ii) Cubes
Expand : (3x + 5y + 2z) (3x - 5y + 2z)
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
If 2a - 3b = 10 and ab = 16; find the value of 8a3 - 27b3.
Evaluate the following :
(8.12)3 - (3.12)3
Expand (3 + m)3
Expand (104)3
Find the volume of the cube whose side is (x + 1) cm
a3 + b3 = (a + b)3 = __________