Advertisements
Advertisements
Question
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^2 + 1/a^2 )`
Sum
Solution
`( a - 1/a )^2 = a^2 + 1/a^2 - 2`
⇒ `a^2 + 1/a^2 = ( a - 1/a )^2 + 2`
⇒ `a^2 + 1/a^2 = (4)^2 + 2 [ ∵ a - 1/a = 4]`
⇒ `a^2 + 1/a^2` = 18
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Expand.
(101)3
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
If `( a + 1/a )^2 = 3 "and a ≠ 0; then show:" a^3 + 1/a^3 = 0`.
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
Find the cube of: 4x + 7y
Find the cube of: `4"p" - (1)/"p"`
Find the cube of: `(2"m")/(3"n") + (3"n")/(2"m")`
If `"p" + (1)/"p" = 6`; find : `"p"^3 + (1)/"p"^3`
Expand (104)3
a3 + b3 = (a + b)3 = __________