Advertisements
Advertisements
Question
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^4 + 1/a^4 )`
Sum
Solution
`( a - 1/a )^2 = a^2 + 1/a^2 - 2`
⇒ `a^2 + 1/a^2 = ( a - 1/a )^2 + 2`
⇒ `a^2 + 1/a^2 = (4)^2 + 2 [ ∵ a - 1/a = 4]`
⇒ `a^2 + 1/a^2` = 18 ...(1)
We know that,
`a^4 + 1/a^4 = ( a^2 + 1/a^2 )^2 - 2`
= `(18)^2 - 2 [ From(1) ]
= 324 - 2
⇒ `a^4 + 1/a^4 =322`
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Expand.
(7 + m)3
Expand.
`(x + 1/x)^3`
Find the cube of: 2a - 5b
Find the cube of: `4"p" - (1)/"p"`
Find the cube of: `(2"m")/(3"n") + (3"n")/(2"m")`
If a + b + c = 0; then show that a3 + b3 + c3 = 3abc.
If a + 2b + c = 0; then show that a3 + 8b3 + c3 = 6abc
If a + b = 5 and ab = 2, find a3 + b3.
Evaluate the following :
(3.29)3 + (6.71)3
Expand: (3x + 4y)3.