English

If a ≠ 0 and a - 1/A = 4 ; Find : ( A^4 + 1/A^4 ) - Mathematics

Advertisements
Advertisements

Question

If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^4 + 1/a^4 )`

Sum

Solution

`( a - 1/a )^2 = a^2 + 1/a^2 - 2`

⇒ `a^2 + 1/a^2 = ( a - 1/a )^2 + 2`

⇒ `a^2 + 1/a^2 = (4)^2 + 2           [ ∵ a - 1/a = 4]`

⇒ `a^2 + 1/a^2` = 18                        ...(1)

We know that,

`a^4 + 1/a^4 = ( a^2 + 1/a^2 )^2 - 2`

                       = `(18)^2 - 2             [ From(1) ]
                       = 324 - 2

⇒ `a^4 + 1/a^4 =322`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Expansions (Including Substitution) - Exercise 4 (B) [Page 60]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 4 Expansions (Including Substitution)
Exercise 4 (B) | Q 10.2 | Page 60
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×