Advertisements
Advertisements
प्रश्न
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^4 + 1/a^4 )`
उत्तर
`( a - 1/a )^2 = a^2 + 1/a^2 - 2`
⇒ `a^2 + 1/a^2 = ( a - 1/a )^2 + 2`
⇒ `a^2 + 1/a^2 = (4)^2 + 2 [ ∵ a - 1/a = 4]`
⇒ `a^2 + 1/a^2` = 18 ...(1)
We know that,
`a^4 + 1/a^4 = ( a^2 + 1/a^2 )^2 - 2`
= `(18)^2 - 2 [ From(1) ]
= 324 - 2
⇒ `a^4 + 1/a^4 =322`
APPEARS IN
संबंधित प्रश्न
If `a + 1/a` = p and a ≠ 0; then show that:
`a^3 + 1/a^3 = p(p^2 - 3)`
If a + 2b = 5; then show that : a3 + 8b3 + 30ab = 125.
Use property to evaluate : 133 + (-8)3 + (-5)3
Use property to evaluate : 93 - 53 - 43
Two positive numbers x and y are such that x > y. If the difference of these numbers is 5 and their product is 24, find:
(i) Sum of these numbers
(ii) Difference of their cubes
(iii) Sum of their cubes.
If 2x - 3y = 10 and xy = 16; find the value of 8x3 - 27y3.
If `x + (1)/x = 5`, find the value of `x^2 + (1)/x^2, x^3 + (1)/x^3` and `x^4 + (1)/x^4`.
If m - n = -2 and m3 - n3 = -26, find mn.
Simplify:
(a + b)3 + (a - b)3
Expand (52)3