Advertisements
Advertisements
Question
If a + 2b + c = 0; then show that a3 + 8b3 + c3 = 6abc
Solution
a + 2b + c = 0 ...(i)
⇒ (a + 2b) + c = 0
⇒ (a + 2b)3 + c3 + 3(a + 2b) c(a + 2b + c) = 0
⇒ a3 + 8b2 + 6ab (a + 2b) + c3 + 0 = 0
⇒ a3 + 8b3 + c3 + 6ab (a + 2b) = 0 ....(2)
Using (1), we get a + 2b = -c
From (2),
a3 + 8b3 + 6ab (-c) = 0
⇒ a3 + 8b3 + c3 = 6abc.
APPEARS IN
RELATED QUESTIONS
Expand.
(7x + 8y)3
If a + 2b = 5; then show that : a3 + 8b3 + 30ab = 125.
If 2x - 3y = 10 and xy = 16; find the value of 8x3 - 27y3.
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^2 + 1/a^2 )`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^4 + 1/a^4 )`
If X ≠ 0 and X + `1/"X"` = 2 ; then show that :
`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`
Simplify:
(a + b)3 + (a - b)3
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`