Advertisements
Advertisements
Question
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Solution
Using (a + b)2 = a2 + 2ab + b2
`("a" + 1/"a")^2`
= `"a"^2 + 2"a"(1/"a") + (1/"a")^2`
⇒ `("a" + 1/"a")^2 = "a"^2 + 2 + (1)/"a"^2`
⇒ `("a" + 1/"a")^2 = "a"^2 + (1)/"a"^2 + 2`
⇒ `("a" + 1/"a")^2` = 14 + 2
⇒ `("a" + 1/"a")^2` = 16
⇒ `"a" + (1)/"a"` = ±4.
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Expand the following, using suitable identity:
(3a – 7b – c)2
Write in the expanded form:
(2a - 3b - c)2
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Evaluate of the following:
1043 + 963
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If a + b = 6 and ab = 20, find the value of a3 − b3
Use identities to evaluate : (101)2
Evaluate: 20.8 × 19.2
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1