Advertisements
Advertisements
Question
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
Solution
In the given problem, we have to find the value of equation using identity
Given \[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
We shall use the identity, `a^3 + b^3 = (a+ b) (a^2 - ab + b^2)`
We can rearrange the \[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]as
`= (5/x + 5x)[(5/x)^2 + (5x)^2 - (5/x)(5x)]`
` =(5/x)^3 + (5x)^3 `
` = (5/x) xx (5/x) xx (5/x) + (5x)xx (5x)xx(5x)`
` = 125/x^3 + 125x^3`
Now substituting the value x = 3 in `125/x^3 + 125x^3`
`= 125/x^3 + 125x^3`
`= 125/3^3 + 125 xx 3^3`
`= 125/27 + 125 xx 27`
`= 125/27 + 3375`
Taking Least common multiple, we get
` = 125 / 27 + (3375 xx 27)/(1xx 27)`
`= 125/27 + 91125/27`
` = (125 + 91125)/27`
` = 91250/27`
Hence the Product value of \[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\] is ` = 91250/27`.
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
4y2 – 4y + 1
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Factorise:
27x3 + y3 + z3 – 9xyz
Evaluate the following using identities:
`(2x+ 1/x)^2`
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
Evaluate the following:
(98)3
Evaluate of the following:
(9.9)3
Find the following product:
If x = −2 and y = 1, by using an identity find the value of the following
If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Find the squares of the following:
9m - 2n
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
Factorise the following:
9y2 – 66yz + 121z2
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`
Factorise the following:
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`