Advertisements
Advertisements
Question
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Solution
(2x - 5) (2x + 5) (2x- 3)
= (4x2 - 25) (2x - 3)
= 8x3 - 12x2 - 50x + 75
(Using identity : (x - a) (x + b)
= x2 - (a - b) x - ab).
APPEARS IN
RELATED QUESTIONS
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
Evaluate the following using identities:
(2x + y) (2x − y)
Write in the expanded form: (-2x + 3y + 2z)2
Evaluate of the following:
(103)3
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
If a - b = 10 and ab = 11; find a + b.
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
Simplify:
(2x + y)(4x2 - 2xy + y2)
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz