Advertisements
Advertisements
Question
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz
Solution
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz
= (4x)2 + (–2y)2 + (3z)2 + 2(4x)(–2y) + 2(–2y)(3z) + 2(4x)(3z) ...[Using identity, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca]
= (4x – 2y + 3z)2
= (4x – 2y + 3z)(4x – 2y + 3z)
APPEARS IN
RELATED QUESTIONS
Evaluate the following product without multiplying directly:
104 × 96
Evaluate the following using identities:
117 x 83
Evaluate the following using identities:
(0.98)2
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Write the expanded form:
`(-3x + y + z)^2`
Simplify (2x + p - c)2 - (2x - p + c)2
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Evaluate of the following:
`(10.4)^3`
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Simplify of the following:
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
Find the square of `(3a)/(2b) - (2b)/(3a)`.
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Expand the following:
`(2"a" + 1/(2"a"))^2`
Simplify by using formula :
(5x - 9) (5x + 9)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001