Advertisements
Advertisements
Question
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.
Solution
Given, a + b + c = 9 and ab + bc + ca = 26 ...(i)
Now, a + b + c = 9
On squaring sides, we get
(a + b + c)2 = (9)2
⇒ a2 + b2 + c2 + 2ab + bc + ca = 81 ...[Using identity, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca]
⇒ a2 + b2 + c2(ab + bc + ca) = 81
⇒ a2 + b2 + c2 + 2(26) = 81 ...[From equation (i)]
⇒ a2 + b2 + c2 = 81 – 52 = 29
APPEARS IN
RELATED QUESTIONS
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Evaluate the following using identities:
117 x 83
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Write in the expanded form:
`(a + 2b + c)^2`
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
If a + b = 10 and ab = 21, find the value of a3 + b3
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Evalute : `((2x)/7 - (7y)/4)^2`
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Use the direct method to evaluate :
(2+a) (2−a)
Use the direct method to evaluate :
(3b−1) (3b+1)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Evaluate: (2 − z) (15 − z)
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
Which one of the following is a polynomial?
Using suitable identity, evaluate the following:
101 × 102