Advertisements
Advertisements
Question
Find the following product:
Solution
Given `(1-x)(1 + x + x^2)`
We shall use the identity `(a-b)(a^2+ ab + b^2) = a^3 - b^3`
We can rearrange the `(1 - x) (1+ x + x^2)`as
` = (1- x) [(1)^2 + (1)(x)+ (x)^2]`
` = (1)^3 - (x)^3`
` = (1) xx (1) xx (1) - (x) xx (x) xx (x)`
` = 1=x^3`
Hence the Product value of `(1-x)(1+x + x^2)`is `1-x^3`.
APPEARS IN
RELATED QUESTIONS
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Write in the expanded form:
`(2 + x - 2y)^2`
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
Evaluate of the following:
933 − 1073
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Expand the following:
(a + 4) (a + 7)
Simplify by using formula :
(5x - 9) (5x + 9)
Evaluate the following without multiplying:
(1005)2
If m - n = 0.9 and mn = 0.36, find:
m2 - n2.
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)