Advertisements
Advertisements
Question
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
Sum
Solution
`"a"^2 - (1)/"a"^2`
= `("a" + 1/"a")("a" - 1/"a")`
= `(±sqrt(13)) (3)`
= ±3`sqrt(13)`.
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Evaluate following using identities:
(a - 0.1) (a + 0.1)
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Find the square of : 3a + 7b
If a + b = 7 and ab = 10; find a - b.
Evaluate: (5xy − 7) (7xy + 9)