English

If X + 1 X = 3 Then X 6 + 1 X 6 = - Mathematics

Advertisements
Advertisements

Question

If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] = 

 

Options

  • 927

  • 414

  • 364

  • 322

MCQ

Solution

In the given problem, we have to find the value of  `x^6 + 1/x^6`

Given  `x+ 1/x =3`

We shall use the identity `(a + b)^3 = a^3 + b^3 + 3ab (a+b)`and  `a^2 + b^2 + 2ab = (a+b)`

Here put `x+ 1/x = 3`,

`(x+ 1/x)^2 = x^2 + 1/x^2 + 2( x xx 1/x)`

             `(3)^2 = x^2 + 1/x^2 + 2 (x xx 1/x)`

                 `9 = x^2 + 1/x^2 + 2`

          `9-2 = x^2 + 1/x^2`

                 `7 = x^2 + 1/x^2` 

Take Cube on both sides we get,

`(x^2 + 1/x^2 )^3 = (x^2)^3 + 1/(x^2)^3 + 3 (x^2 xx 1/x^2)(x^2 + 1/x^2)`

                `(7)^3 = x^6 + 1/x^6 + 3(x^2 xx 1/x^2) (7)`

                  `343 = x^6 + 1/x^6 +  7 xx 3`

         `343 - 21 = x^6 + 1/x^6`

                   `322 = x^6 + 1/x^6`

Hence the value of `x^6 + 1/x^6` is 322.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Algebraic Identities - Exercise 4.7 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 4 Algebraic Identities
Exercise 4.7 | Q 4 | Page 30

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×